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SUPERSONIC LIFTING CAPABILITIES OF LARGE-ANGLE CONES

By James F. Campbell and Dorothy T. Howell
Langley Research Center

SUMMARY

An analysis has been made of the supersonic lifting capabilities of large-angle
cones. Experimental data used for this investigation were obtained on wind-tunnel
models at Mach numbers from 1.41 to 4.63 for a Reynolds number of 0.8 X 108 pbased on
model base diameter. Cone semiapex angles ranged from 40° to 90° (disk).

Results of this study indicated that transverse displacement of the center of gravity
vertically from the vehicle longitudinal center line is an effective method of producing
trim lift on large-angle cones, the trim lifting capability increasing with increase in cone
semiapex angle. An increase in cone semiapex angle decreases the transverse center-
of -gravity displacement required to achieve a given value of trim lift-drag ratio, and
correspondingly lowers trim angle of attack, and increases trim drag. Transverse dis-
placement of the center of gravity up to 4 percent of the base diameter from the longi-
tudinal center line results in continual decreases in trim drag to values that are about
80 perc :nt of the trim drag obtained for the center of gravity located on the longitudinal
center line. For all combinations of cone semiapex angle and transverse center-of -
gravity location, trim drag is essentially constant at Mach numbers greater than 2.
Rearward longitudinal displacement of the center of gravity from the cone base to 10 per-
cent of the base diameter has little or no effect on the trim aerodynamic characteristics
obtained by transverse center-of-gravity shift for cones with semiapex angles equal to
or greater than 700,

INTRODUCTION

The mission of placing an unmanned scientific payload on the surface of Mars is
receiving the continued attention of the National Aeronautics and Space Administration.
Exploratory studies, such as those of references 1 and 2, have provided the basis for the
present concept of a probe/lander which is an entry vehicle having a ballistic coefficient
low enough to assure proper aerodynamic retardation to an altitude and Mach number at
which a terminal deceleration system (such as a parachute) can be deployed. Entry into
the tenuous Martian atmosphere demands that much of the entry weight be used for vehi-
cle structure and heat shield, thus severely limiting the allowable payload weight. This



is particularly the case for a direct ballistic entry from an interplanetary trajectory
(ref. 3).

Regardless of which entry mode is employed, direct or out of orbit, a lifting entry
compared with a ballistic entry, can increase substantially the weight allotted as payload
(ref. 4) while allowing a relaxation of the constraints imposed by terminal-decelerator
deployment; for example, the Mach number would be lower for a given deployment alti-
tude. References 4 and 5 demonstrate the significant advantages over the ballistic entry
that can be achieved with only small amounts of lift (lift-drag ratio of about 0.3). The
trajectory alternatives and payload growth potential afforded by a lifting entry make it
desirable to investigate the lifting capabilities of one of the leading candidates for the
entry vehicle shape, the large-angle cone.

The purpose of the present study is to determine the lifting capabilities of large-
angle cones at supersonic speeds. Trim lift was produced on the cone bodies by verti-
cally displacing the center of gravity from the vehicle longitudinal center line; these

transverse displacements were at distances of 1, 2, 3, and 4 percent of the base diameter.

The experimental wind-tunnel data used for this investigation are published in refer-
ences 6 and 7 and were obtained at Mach numbers from 1.41 to 4.63 for a Reynolds num-
ber of 0.8 x 106 based on model base diameter. Cone semiapex angles ranged from 40°

to 90° (disk).

SYMBOLS
Cp drag coefficient
Cm pitching-moment coefficient
Cm . slope of pitching-moment curve
d base diameter
L/D lift-drag ratio
M free-stream Mach number
X,Z longitudinal and vertical coordinates of center of gravity, origin at center of
cone base (see fig. 1)
a angle of attack
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fc cone semiapex angle

Subscript:

trim conditions at trim angle of attack
EXPERIMENTAL DATA

The experimental wind-tunnel data used for the present study are reported in ref-
erences 6 and 7 and were obtained for cone models with semiapex angles of 400, 500,
60°, 70°, 80°, and 90° (disk). These models, illustrated in figure 1, had no nose or
shoulder bluntness. Mach numbers at which the data were obtained ranged from 1.41
to 4.63 for a Reynolds number of 0.8 x 106 based on model base diameter.

The aerodynamic coefficients published in references 6 and 7 are referred to a
center-of-gravity location at the center of the cone base (x/d = z/d = 0). These same
data are presented herein along with data resulting from transverse displacement of the
center of gravity at the base plane (x/d = 0) to locations vertically below the center line
and at distances of 1, 2, 3, and 4 percent of the base diametler from the center line. Data
are also presented for longitudinal displacement of the center of gravity along the center
line (z/d = 0) to locations 5 and 10 percent of the base diameter behind the base plane.
(See fig. 1.)

The reader will note that for high-drag vehicles, such as the large-angle cones dis-
cussed herein and the Apollo vehicle discussed in reference 8, a center-of-gravity loca-
tion above the center line results in a negative trim angle of attack (nose-down condition),
which produces a positive L/D. Since most of the experimental data of references 6
and T were obtained at positive angles of attack, it was necessary to displace the center
of gravity below the center line so that the desired aerodynamic characteristics at trim
could be obtained. Because the aerodynamic characteristics of a cone are symmetrical
about a= 00, this technique of obtaining trim aerodynamic characteristics will not affect
the conclusions of this study.

RESULTS AND DISCUSSION

Effects of Transverse Displacement of Center of Gravity

The longitudinal aerodynamic characteristics resulting from transverse displace-
ment of the center of gravity along the base plane (x/d = 0) are presented in figures 2
to 7 for the range of test Mach numbers and cone semiapex angles. The Cp and



L/D values shown are for z/d =0 only, but since body forces are independent of
center-of-gravity location, these values are representative of the forces existing for all
the center-of-gravity locations. The dashed lines represent extrapolated data and are
presented to illustrate (L/D)trim values attainable at angles of attack greater than
those at which experimental data were obtained.

The data indicate that all the cones are statically stable ('Cmoz) throughout the
angle-of -attack range with the center of gravity located in the base plane. Generally,
the largest drag values occur at a= 09; increasing angle of attack causes a decrease
in Cp and L/D (or an increase in -L/D as it will be referred to in the subsequent
discussion). The effect of increasing transverse displacement of the center of gravity
is to produce a progressive increase in trim angle of attack and corresponding decreases
in trim Cp and increases in -(L/D)irim- The stability at trim angles of attack
remains practically unchanged from that at zero angle of attack.

The effects of z/d on the trim aerodynamic characteristics are summarized in
figure 8 for the range of cone semiapex angles at each Mach number. These summary
data indicate that transverse center-of-gravity displacement is an effective method of
producing trim lift-drag ratio for most cone semiapex angles, L/D values being
obtained in excess of 0.3, a value which was shown in references 4 and 5 to have signif-
icant effects on vehicle trajectory and allowable payload weight. The effectiveness of
producing (L/D)iyim DbV shifting the center of gravity increases with increased cone
semiapex angle so that for a given center-of-gravity location, the largest -(L/D)trim
value is obtained by the 90° cone. The sign of (L/D)piy, for the 40° cone changes
from positive at M = 4.63 (fig. 8(f)) to minus at the lower Mach numbers. This depen-
dence of the sign of (L/D)trim on Mach number is not desirable for a lifting entry, par-
ticularly from the standpoint of a simplified control system, that is, no roll control
(ref. 8). This trend would be alleviated somewhat by nose bluntness (ref. 9), which would
be present on the actual flight vehicle. The summary data of figure 8 also show that trim
drag decreases with increase in z/d for all the cone semiapex angles, (CD)trim values
for z/d= 0.04 being about 80 percent of those for z/d =0. The effects of center-of-
gravity location on the variation of trim aerodynamic characteristics with cone semiapex
angle are illustrated in figure 9 for M = 4.63. For a given z/d, an increase in cone
semiapex angle leads to higher trim angles of attack, except for the 40° cone, with corre-

sponding increases in trim drag and -(L/D)ipim-

The effects of Mach number on the trim aerodynamic characteristics of the 60°
and 70° cones are presented in figure 10. The trim Cp values are seen to remain
essentially constant at Mach numbers greater than 2 for all center-of-gravity locations.
Likewise, trim angle of attack and (L/ D)trim are generally insensitive to Mach number
for values of z/d up to 0.02. For larger z/d values, a decrease in Mach number
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results in an increase in trim angle of attack and an associated increase in '(L/D)trim'
These trends of trim aerodynamic characteristics with Mach number are shown in fig-
ure 11 to apply for all the cone semiapex angles except for the 40° and 50° cones, which
experience some increase in @iy and -(L/D)ipjy for z/d= 0.02. The fact that
the smallest @i, occurs at the highest Mach number is advantageous in minimizing
flow asymmetry in that region of the flight trajectory where the spacecraft would
encounter the maximum heating and structural loads.

The combinations of cone semiapex angle and transverse center-of-gravity location
necessary to achieve given trim values of L/D are presented in figure 12 for M = 4.63
along with the resulting values of trim angle of attack and trim drag. These results
demonstrate in obvious fashion that a cone with a larger semiapex angle requires smaller
center-of-gravity displacement to achieve a given value of trim L/D, trims at a lower
angle of attack, and has higher trim drag, all of which are advantageous trends for lifting
entry. An example of lifting capability is provided by the 70° cone which attains a value
of -(L/D)pim ©Of 0.4 with a z/d value of 0.04. This center-of-gravity location
amounts to a displacement of 4.8 inches (12.2 cm) from the center line of a 10-foot-
diameter (3.05-m) flight vehicle, this payload diameter being acceptable to a
Titan IIC/Centaur launch vehicle. The Mach number effects previously discussed
should be recalled in noting that the combinations of cone semiapex angle and center-of-
gravity location presented in figure 12 for M = 4.63 provide conservative estimates of
the lifting capabilities of the cones at lower Mach numbers, particularly if z/d is
greater than 0.02.

Effects of Longitudinal Displacement of Center of Gravity

The preceding discussion has indicated that larger cone semiapex angles provide
the aerodynamic advantages of increased lifting capability coupled with higher drag.
Utilizing a larger semiapex angle, however, reduces the amount of cone volume available
for packaging the instrumented lander and equipment associated with entry and thus shifts
the entry vehicle center of gravity rearward. The center of gravity would be located at
or behind the base of the cones with the largest semiapex angles. For this reason it is
desirable to take a cursory look at the effects of longitudinal center-of-gravity displace-
ment on the aerodynamics of the family of cones of the present study.

The pitching-moment characteristics resulting from the longitudinal displacement
of the center of gravity along the cone center line (z/d = 0) are presented in figures 13
to 18 for the range of test Mach numbers and cone semiapex angles. The Cp and
L/D variations with angle of attack are not shown in these figures since they are inde-
pendent of center-of-gravity location and have been presented previously in figures 2 to 7.



All the cones are stable with the center of gravity located at the base (x/d = 0).
Displacing the center of gravity rearward from the base results in a decrease in cone
stability, the largest decrease occurring on the 40° cone and leading to an unstable con-
dition with the center of gravity located farthest aft (x/d = -0.10). The decrease in cone
stability with rearward displacement of center of gravity diminishes with increase in
cone semiapex angle, the stability of the 90° cone (fig. 18) being unaffected by center-of-
gravity movement. These results would be expected since a longitudinal shift of the
center -of -gravity location would yield increments of pitching moment produced by a
normal force and an incremental moment arm, where normal force is largest for the
40° cone and goes to zero for the 90° cone (ref. 6).

The effects of transverse center-of -gravity displacement on trim aerodynamics for
the cones with x/d = 0 were discussed previously and would apply here for the largest
semiapex-angle cones (f. Z 70°) having more rearward center-of-gravity locations; this
is because the stability levels of these large-angle cones are relatively unaffected by
longitudinal center-of-gravity displacement. For semiapex angles less than 700, the
decrease in stability with rearward center-of-gravity displacement would result in an
increase in trim angle of attack and a corresponding decrease in (CD)trim and increase
in -(L/D){ypim from those trim values obtained with the center of gravity located in the
base plane (x/d = 0).

Little or no effect of Mach number is evident in these data.
CONCLUSIONS

An analysis has been made of the supersonic lifting capabilities of large-angle
cones. Experimental data used for this investigation were obtained on wind-tunnel
models at Mach numbers from 1.41 to 4.63 for a Reynolds number of 0.8 X 106 based on
model base diameter. Cone semiapex angles ranged from 40° to 90° (disk). Results of
this study lead to the following conclusions:

1. Transverse displacement of the center of gravity vertically from the vehicle
longitudinal center line is an effective method of producing trim lift on large-angle cones,
the trim lifting capability increasing with increase in cone semiapex angle.

2. Increase in cone semiapex angle decreases the transverse center-of-gravity dis-
placement required to achieve a given value of trim lift-drag ratio, and correspondingly
lowers trim angle of attack, and increases trim drag.

3. Transverse displacement of the center of gravity up to 4 percent of the base
diameter from the longitudinal center line results in continual decreases in trim drag to
values that are about 80 percent of the trim drag values obtained for the center of gravity
located on the longitudinal center line.
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4. For all combinations of cone semiapex angle and transverse center-of-gravity
location, trim drag is essentially constant at Mach numbers greater than 2.

5. Rearward longitudinal displacement of the center of gravity from the cone base
to 10 percent of the base diameter has little or no effect on the trim aerodynamic char-
acteristics obtained by transverse center-of-gravity shift for cones with semiapex angles
equal to or greater than 70°.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 4, 1969,
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A

(a) Model details. 6, = 40°, 50°, 60°, 70°, 80°, and 90°.

Center of gravity

/
+Z

(b} Center-of-gravity locations as fractions of base diameter. For x/d =0, z/d = 0, 0.01, 0,02, 0.03, and 0.04;
for zd =0, x/d =0, -0.05, and -0.10.

Figure 1.- Schematic diagrams of cone models illustrating transverse and longitudinal center-of-gravity locations.
d = 4.80 in. (12.19 cm).
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Figure 13.- Effect of longitudinal center-of-gravity location on pitching-moment characteristics of the 40° cone for range of Mach numbers,
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